3. Two spectral lines, corresponding to wavelengths λ_{1} and λ_{2}, are distinguished in a lamp spectrum. Their radiant powers amount to 12% and 18% of the lamp total radiant power, respectively. The remaining part of the spectrum produces 70% of the lamp photopic luminous flux. Under photopic conditions $\mathrm{V}\left(\lambda_{2}\right)=2 \mathrm{~V}\left(\lambda_{1}\right)$ and $\mathrm{K}=683 \mathrm{Im} / \mathrm{W}$, while under a luminance level of $1 \mathrm{~cd} / \mathrm{m}^{2}($ mesopic vision $) \mathrm{V}_{\mathrm{m}}\left(\lambda_{1}\right)=3 \mathrm{~V}\left(\lambda_{1}\right), \mathrm{V}_{\mathrm{m}}\left(\lambda_{2}\right)=0.6 \mathrm{~V}\left(\lambda_{2}\right)$ and $\mathrm{K}_{\mathrm{m}}=930 \mathrm{~lm} / \mathrm{W}$. Knowing that the lamp luminous flux produced by the remaining part of the spectrum did not change moving from photopic to the specified mesopic conditions, calculate the percentage change of the lamp luminous flux.

Solution:

$$
\frac{\Phi\left(\lambda_{1}\right)}{\Phi\left(\lambda_{2}\right)}=\frac{683 \cdot \mathrm{~V}\left(\lambda_{1}\right) \cdot 0.12 \mathrm{P}_{\mathrm{r}}}{683 \cdot \mathrm{~V}\left(\lambda_{2}\right) \cdot 0.18 \mathrm{P}_{\mathrm{r}}}=\frac{1}{3}
$$

(P_{r} is the lamp total radiant power).
Since $\Phi\left(\lambda_{1}\right)+\Phi\left(\lambda_{2}\right)=0.3 \Phi_{1}$, the following is true: $\Phi\left(\lambda_{1}\right)=0.075 \Phi_{1}$ and $\Phi\left(\lambda_{2}\right)=0.225 \Phi_{1}$ (Φ_{1} is the lamp luminous flux under photopic conditions).
$\frac{\Phi_{\mathrm{m}}\left(\lambda_{1}\right)}{\Phi\left(\lambda_{1}\right)}=\frac{\mathrm{k}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}}\left(\lambda_{1}\right) \cdot 0.12 \mathrm{P}_{\mathrm{r}}}{\mathrm{k} \cdot \mathrm{V}\left(\lambda_{1}\right) \cdot 0.12 \mathrm{P}_{\mathrm{r}}} \Rightarrow \Phi_{\mathrm{m}}\left(\lambda_{1}\right)=\frac{\mathrm{k}_{\mathrm{m}}}{\mathrm{k}} \cdot 3 \cdot \Phi\left(\lambda_{1}\right)=\frac{930}{683} \cdot 3 \cdot 0.075 \Phi_{1}=0.306 \Phi_{1}$
$\frac{\Phi_{\mathrm{m}}\left(\lambda_{2}\right)}{\Phi\left(\lambda_{2}\right)}=\frac{\mathrm{k}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}}\left(\lambda_{2}\right) \cdot 0.18 \mathrm{P}_{\mathrm{r}}}{\mathrm{k} \cdot \mathrm{V}\left(\lambda_{2}\right) \cdot 0.18 \mathrm{P}_{\mathrm{r}}} \Rightarrow \Phi_{\mathrm{m}}\left(\lambda_{2}\right)=\frac{\mathrm{k}_{\mathrm{m}}}{\mathrm{k}} \cdot 0.6 \cdot \Phi\left(\lambda_{2}\right)=\frac{930}{683} \cdot 0.6 \cdot 0.225 \Phi_{1}=0.184 \Phi_{1}$
(the lamp spectral power distribution does not depend on the conditions of vision).
$\Phi_{\mathrm{ml}}=\Phi_{\mathrm{m}}\left(\lambda_{1}\right)+\Phi_{\mathrm{m}}\left(\lambda_{2}\right)+0.7 \Phi_{1}=1.19 \Phi_{1}$
(the lamp luminous flux under the specified mesopic conditions $\left(\Phi_{m}\right)$ increased 19\% compared to that existing under photopic conditions).
8. A small rotationally symmetric luminaire S, which emits light according to Lambert's cosine law and has the light output ratio (LOR) of 0.65 , illuminates a small horizontal surface P characterised by perfect diffuse reflection ($\rho_{p}=0.3$). The luminaire contains a lamp with luminous flux of $17,167 \mathrm{~lm}$. Knowing that the luminance of surface P is $14.23 \mathrm{~cd} / \mathrm{m}^{2}$, calculate the reflectance of the identical mirrors O_{1} and O_{2}.

Solution:

